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In order to predict the molecular symmetries and the geometrical structures 
of conjugated molecules having the doubly degenerate first-order Jahn-Teller 
active modes (Q1 and Q2) or the doubly denegerate modes through which 
the second-order vibronic couplings occur (Q~ and Q~), the potential energy 
curves along these modes are expressed as the power series, including up to 
the third power. It is shown that although there are cases in which we cannot 
practically differentiate between the potential energy profiles along Q1 and 
Q2 or Q~ and Q~, in so far as we can differentiate between them, a potential 
energy minimum should always be located along Q~ or Q~ that distorts a 
molecule in a more symmetrical way. This is in agreement with the available 
experimental facts. Finally on the basis of the perturbation theory, the 
coefficients of  various powers (up to the third power) in the expansion of  the 
electronic part of  potential energy in the power series of the relevant mode 
are expressed in terms of the zeroth-order electronic wavefunctions and 
energies. 

Key words: Potential energy surface--first-order Jahn-Teller effect--second- 
order Jahn-TeUer effect 

1. Introduction 

The Jahn-Teller  theorem [1] gives a substantial clue for determining the molecular 
symmetries and predicting the geometrical structures of  molecules having degen- 
erate ground states. Nuclear distortions due to the Jahn-Teller effect have been 
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predicted for a wide variety of molecules, though the experimental evidence of  
their existence is very scarce. The effect is called the first-order Jahn-Teller  (FOJT) 
effect, since it arises from the energy lowering due to the first-order terms in Eq. 
(1): 

(OE) I / O ~ E \  
E ( Q , , Q 2 , . . . ) = E ~  ~ o Q , + - •  

�9 

' ( ) 
6 , �9 oq,-8-~jaQk o Q'QjQk+''" (1) 

where Qi is the small nuclear displacement along the ith nuclear (symmetry) 
coordinate and E ~ is the original energy at point Qi = 0  ( i =  l, 2 , . . . ) .  

In recent years, the second-order Jahn-Teller  (SOJT) effect, which manifests in 
molecules having nondegenerate ground states, has received wide attention, the 
effect being associated with the energy lowering due to the second-order terms 
in Eq. (1). Pearson [2] has demonstrated how well the symmetry rules derived 
from the SOJT effect work in predicting the geometrical structures for a variety 
of inorganic and simple organic molecules. Nakajima [3] and Nakajima et al. [4] 
have successfully applied the SOJT effect to the prediction of  the geometrical 
structures with respect to C-C bond lengths of the ground and lower excited 
states of  conjugated hydrocarbons. 

It is the purpose of  the present and the following paper to examine on the basis 
of Eq. (1) the potential energy profiles of conjugated molecules along the doubly 
degenerate FOJT active modes (Q~ and Q2) or along the doubly degenerate 
modes through which the second-order vibronic couplings responsible for the 
second-order terms in Eq. (1) occur (SO coupling modes l, Q~ and Q~). As an 
example of  molecules treated, in Fig. 1 are shown the doubly degenerate FOJT 
active modes (E') ,  Q1 and Q2, for the cyclopropenyl radical belonging to D3h. 
The FOJT theorem provides no information as to along which of  Q1 and Q2 a 
minimum of potential energy exists. In order to answer this question we have to 
take into account the second-order terms with respect to the FOJT active modes. 

Qlp Qlr, Qz 

Fig. 1. The FOJT active degenerate modes (E') of the cyclopropenyl radical. Suffixes p and n indicate 
the positive and negative directions of Q~, respectively 

The SO coupling mode does not always bring about the SOJT effect: if in a molecule the energy 
gap between the ground and excited states that couple through the SO coupling mode is larger than 
a certain critical value, the molecule does not undergo the SOJT effect [2, 3] 



Potential energy profiles along vibrational modes 123 

If an energy minimum is predicted to exist along Q1 by examining the second-order 
terms, which is true of this molecule (vide infra), we need the further information 
as to along which of the positive and negative directions of Q1 the energy minimum 
is located. This is because, obviously, nuclear distortions along the mutually 
opposite directions of Q1 produce the different molecular shapes: an oblate 
triangle form in the positive direction (Qlp) and a prolate triangle form in the 
negative direction (QI,). In order to predict which of the two forms corresponds 
to the true energy minimum, the third-order term with respect to Q~ should at 
least be taken into account. 

An example of cases in which the SO coupling modes are (doubly) degenerate 
is given by the lowest excited triplet state (3B~u) and the second excited singlet 
state (~Blu) of benzene. The SO coupling modes, Q~ and Q~, through which the 
3B~ u and ~B~u states vibronically couple with the nearby higher degenerate excited 
3Elu and ~E~u states, respectively, belong to E2g and are shown in Fig. 2. As will 
be shown later, a minimum of potential energy is found along Q~ in both cases. 
Now that the nuclear distortions along mutually opposite directions of Q~ give 
different molecular shapes, the quinoid and antiquinoid forms, in order to predict 
which form is energetically more favorable, we have to invoke at least the 
third-order term with respect to Q~. 

Liehr [5] has examined semiquantitatively the potential energy profiles of the 
cyclopropenyl radical and shown that an energy minimum should lie in one 
direction of Q~ and a saddle point in the other. He has not, however, mentioned 
along which of the positive and negative directions of Qi the energy minimum 
is located. Opik and Pryce [6] have studied theoretically the molecular shapes 
of octahedral metal complexes having the degenerate ground states (ZEg) such 
as Cu(H20)62§ Taking into account the third-order terms with respect to the 
FOJT active modes, together with the electrostatic interactions between Cu 2+ and 
the water molecules, they have concluded that in Cu(H20)~ § the tetragonally 
elongated form is energetically more stable than the tetragonally compressed one. 
As to the octahedral Cu 2§ complexes, Jotham and Kettle [7] have reached the 
same conclusion by assuming that a section of the potential well might be 
described by the familiar Morse curve and by examining the restoring forces for 
this case. 

Q~p Qln Q~ 

Fig. 2. The SO coupling degenerate modes (E2g ~) of the lowest excited triplet state (3Bt.) and the 
second excited singlet state (~ B 1 u) of benzene 
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In this paper, we develope a general theory for predicting along which of the 
doubly degenerate FOJT active or SO coupling modes of conjugated molecules 
an energy minimum may possibly exist and furthermore along which of the 
mutually opposite directions of thus decided mode the energy minimum should 
be located. For this purpose, we examine the sections of potential energies along 
the relevant modes by taking into account up to the third-order terms in Eq. (1). 
Applications of the general theory to individual molecules will be made in the 
following paper. 

2. Theory 

We start by assuming for a conjugated molecule a fully-symmetrical arrangement 
of carbon nuclei, and then distort the nuclei from the symmetrical arrangement 
by means of a pair of degenerate nuclear coordinates Ql and Q2 or Q~ and Q~. 
The sections of potential energy along these modes are expressed as the power 
series of the relevant modes, including up to the third power. 

First, we treat the nondegenerate case. The potential energy surface as a function 
of Q1 and Q2 of a nondegenerate ground state, 00, is given by 

Eo(Q,, Q2)---(0o(Q,, Q2)[H'[Oo(Q1, Q2)) (2) 

where the brackets mean the integration with respect to electronic coordinates, 
and H'  is defined as 

H'= H'(Qb Q2) = H(Q~, Q2) - E ~ (3) 

whre E ~ is the ground-state energy of the original structure. 

For molecules having doubly degenerate ground states, 0Ol and 0o2, the potential 
energy surface is composed of the two parts, one belonging to a totally symmetric 
representation 

Eo,~( Q,, Q2)= {(Ool(Qb Qz)IH'[Oo,( Q,, Q2)) 

+(0o2(Q1, Q2)[H'[Oo2(Qb Q2))}/2 (4) 

and the other to a nontotally symmetric degenerate one of the original point group 

Eo..~( Q1, Q2)= {(0o,(Q1, Q2)IH'IOo,( Q~, Q2)) 

- (0o2(Q~, Q2)[ H'I 0o2(Q1, Q2))}/2 (5- l) 

Eo,,2(Q1, Q2)= (Oo~( Q~, QE)IH'[Oo2(Q1, Q2)). (5-2) 

Note that for the degenerate SO coupling modes, Q~ and Q2 in Eqs. (2)-(5) 
should be replaced by Q] and Q~, respectively. We now expand Eqs. (2), (4) 
and (5) in the power series of Q~ and Q2 up to the third power. In Table 1 are 
shown degenerate nuclear distortions (up to the third power) that form the bases 
for irreducible representations of the point groups, D3h, Dsh, D6h, and D7h. The 
nuclear distortions that form the bases for doubly degenerate representations of 
these point groups have the two components which are of different symmetry 
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Table 1. Irreducible representations to which belong Q1 and Q2, their squares 
and cubes, and their binary products for various types of modes 

125 

Types of modes 
Nuclear 1 2 3 
distortions D3h D6h D5h D7h 

Q,, Q2 E' Ezg E~ E~, E~ E~ E~ 
Q2 + Q2 A~ A,g A~ A~ A t A~ A~ 

2 2 
Q1- Q2 E' E~ E~ E:~ E~ E~ 2Ql Q2 E2g 

(Q~ +Q~)Q' E' E2~ E~ E~ E~ E~ E~ ( Q~ + 0 2) Q2 
Q~-3Q, O 2 A i A,g 
Q3-3Q2Q2 A'2 A2~ E'2 E~ E~ E~ E L 

with respect to operation cry: one is symmetric and the other antisymmetric. The 
two components belong to the different irreducible representations of the reduced 
point group if it still includes o-v, as in the case of the above four point groups. 
Further, it is apparent that Table 1 holds true also for the degenerate ground-state 
wavefunctions, that is, Q1 and Q2 can be replaced by ~0ol and ~02, respectively. 
Throughout  this paper we define the choice of  Q~ and 02 and that of  qJo~ and 
~02 as follows: 

ov(Q~, Q2) = (Q,, -Q2) (6-1) 

o-v(~o,, qSo~) = (~Oo~, -q'o2). (6-2) 

With the degenerate SO coupling modes, Table 1 is read with Q~ and Q2 being 
replaced by Q~ and Q~, respectively. It is thus shown that in molecules belonging 
to D3h , Dsh , D6h , and Dvh, the FOJT active or SO coupling degenerate modes 
Q1 and Q~ or Q] and Q~ bring about distorted structures belonging to the different 
point groups. 

In the case of  molecules belonging to point groups which do not have operation 
o-v, e.g., C3h, distorted structures brought about by the FOJT or SOJT effect belong 
to the same point group: in case of C3h, both the two distorted structures belong 
to Cs. We cannot energetically distinguish between the two distorted structures 
belonging to the same point group in the framework of the present group 
theoretical treatment. We have thus excluded C3h , C4h , Csh , C6h etc. Furthermore, 
in molecules belonging to D4h, e.g., cyclobutadiene, the FOJT effect is absent 
and the SO coupling mode (BEg) is not degenerate. In its cation and anion 
radicals, the FOJT active mode is not degenerate and the SO coupling degenerate 
modes (Eu), if these radicals undergo the SOJT effects, bring about distorted 
structures both belonging to C2v. A similar situation is found in molecules 
belonging D4nh (n > 1) and their cation and anion radials so that these point 
groups also are excluded. 

In Table 1 we classify the modes of nuclear distortion into three types from the 
following reasons. When in a molecule Q1 and Q2, and (Q2_ Q22) and 2QIQ2 
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belong to a unique (doubly) degenerate irreducible representation, E'  of D3h 
and E2g of D6h, modes QI and 02 of the molecule are of Type 1. Note that QI 
and Q2, and (Q12 + Q2) Q1 and (Q2 + Q~) Q2 belong to the same representation for 
all the types. In Type 2, (Q2-  Q~) and 2Q1Q2, and (Q3 _ 3 Q1Q~) and (Q3 _ 3 Q~Q2) 
belong to the same representation, which is different from that of Q1 and Q2. 
For modes of Type 3, Qi and Q2, (Q2-  Q22) and 2QIQ2, and (Q3-3Q,  Q2) and 
(Qa_3Q2Q2) belong to the three different doubly degenerate representations, 
e.g., E~, EL, and E~, respectively. The cyclic permutation produces the remaining 
two cases. 

3. Sections of potential energy surfaces along the FOJT active 
or SO coupling modes 

3.1. The SO coupling modes for molecules having nondegenerate ground state 

The simplest example of this type of molecule is given by the ground state of 
the cyclopropenyl cation (D3h). In this molecule, the SO coupling modes (E') 
are degenerate on account of the existence of a lower doubly degenerate excited 
state and are of Type 1. Eo(Q~, Q~) for the SO coupling modes of Type 1 takes 
the following form; 

Eo(Q~, Q~) = b~( Q~ 2 + Q~2) + c~( Q~3 _ 3 Q~ Q~2) (7) 

where b~ and c~ are numerical numbers. For the SO coupling modes of Types 2 
and 3, we have 

Eo(Q~, Q~) = b~(Q~2+ Q~2). (8) 

�9 Eqs. (7) and (8) are obtained by noting that all the expansion terms of Eo(Q~, Q~) 
given by Eq. (2) should be totally symmetric. It is shown from Eq. (7) that since 
it does not contain terms with Q~3, for modes of Type 1 a potential energy 
minimum should exist along Q~. Along which of the positive and negative 
directions of Q~ the energy minimum is located is governed by the signed value 
of c~. For the modes of Types 2 and 3, Eq. (8) indicates that there is no difference 
in energy between the sections of potential energy along Q~ and Q~. 

It should be added that whether a molecule of the type under consideration is 
actually distorted along the SO coupling modes or not depends on the actual 
value of b~: if it is positive, the molecule does not actually undergo the molecular- 
symmetry reduction due to the SOJT effect. 

3.2. The FOJT active modes for molecules having (doubly) degenerate ground states 

The potential energy Eo(Q1, Q2) for a molecule with doubly degenerate ground 
states is composed of two parts with different symmetries (Eqs. (4) and (5)). 
Since by definition ~bOl is symmetric with respect to operation tro and fro2 antisym- 
metric, Eq. (5-1) includes only the symmetric terms, while Eq. (5-2) only the 
antisymmetric ones. 
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For the modes of Type 1 (for example, the E' modes of the cyclopropenyl radical) 
we have 

Es (Q,, 02) = b,(Q2 + Q22) + c2(Q] - 3 Q, Q2) 

Enl( Qi, Q2) -- aQl - bE( Q~- Q~) + cI( Q2 + Q~)QI (9) 

En2(Q~, Q2) = aQ2 + b2(2Q~ Q2) + Cl (Q2 + Q2)Q2 

where we have omitted suffix 0. 

Our next task is to take out the components along QL and Q2 from the potential 
energy surfaces given by Eq. (9). For this purpose, we have to define the degenerate 
wavefunctions along the Q~ and Q2 modes. The wavefunctions for Q1 are taken 
to be ~bol(Ql, 0) and ~bo2(Ql, 0) by definition. Those along Q2 are then given by 

1 
~bo+(O, Q2)=~-~ (~o,(0, Q2)+ ~02(0, Q2), 

(lO) 
1 

~bo_(0, Q2) = ~  0Po,(0, Q2)- ~b02(0, Q2)). 

For the modes of Type 1 we thus obtain the potential energy curves along Q1 
and Q2 as follows: along Q1 we have 

(~bo,(Q1, 0)[H'l~bo,(Q,, 0))= aQi + ( b , -  b2)Q~ +(c, + c2)Qa~ 
(II) 

(~bo2(Q,, 0)IH'I ~o2(Q,, o)) = - aQ, + (bl + b2) Q2 + (_ c, + c2) Q3 

and along Q2 

(~0+(0, Q2)IH'I ~0+(0, Q2)) = aQ2 + b, Q~ + Cl Q3 
(12) 

(~bo_(0, Q2)IH'[ ~bo-(0, Q2)) = -aQ2 + b, Q2_ ct Q3. 

Comparing the possible signed values of the coefficients of the second-order 
terms of Eq. (12) with those of Eq. (11), we can conclude that a potential energy 
minimum should be located along Qt. Along which of the positive and negative 
directions of QI there exists the energy minimum is governed by the signed values 
of hi, b2, Cl, and c 2. It is noted that in this particular case, the differentiation 
between the potential energy profiles along the mutually opposite directions of 
QI can be made even by the second-order terms. 

Likewise, for the modes of Types 2 and 3 the potential energy profiles along Q~ 
and Q2 are given, respectively, by 

(1~01 (Q~, 0)1H'[ ~bo~ (Q~, 0)) = aQ, + bl Q2 + Cl Q3 
(13) 

(~bo2(Q1, 0)1H'l ~bo2(Q~, 0)) = - aQl + b~ Q2_ cl Q3 

and 

(qSo+(0, QE)lH'lqJo+(0, Q2)) = aQ2 + bl Q22 + c! Q23 
(14) 

(q~o_(0, Q~)lH'lqJo-(0, Q2)) = -aQ2 + b, Q2 _ c1Q3. 
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Apparently, for these modes there is no difference between the potential energy 
curves along Q1 and 02- 

3.3 The SO coupling modes for molecules having the degenerate ground states 

We now deal with the SO coupling modes for a molecule which undergoes the 
FOJT effect. We examine the potential energy profiles along the SO coupling 
modes that belong to a degenerate irreducible representation different from that 
to which the FOJT active modes belong. For example, in the lowest excited 
singlet state (EL) of the cyclopentadienyl cation, the SO coupling modes belong 
to EL and the FOJT active modes to E~. Since in molecules whose FOJT active 
modes are of Type 1, the SO coupling modes belong to the same degenerate 
representation as the FOJT active modes, they are excluded from the present 
discussion. 

First, we treat molecules whose SO coupling modes are of Type 2. The potential 
energy profiles along Q~ and Q~ are expressed, respectively, by 

(O~,(Qi, 0)[H'I~bo~(Q,,' ' 0)) = (b[ - b~) ~''2-tg, -r c2 k~,' ~,3 

(~b~2(Q~, 0)IH'i0~2(Q~, 0)) = ( b~ + bL) Q~ 2 -  cLQ~ 3 

and 

(0~+(0, QL)IH'[0~+(0, QL)) = o,tg2"' ,-,,2-vc2w- ,~,3 

(0~-(0, Q~)IH'I~_(O, QL) ) -  ,,.-.,2 ,~,3 - o i t g 2  - c2 tg2 �9 

(15) 

(16) 

Eqs. (15) and (16) indicate that irrespective of the signed values of b] and b~, a 
minimum of the potential energy should be located along Q]. Along which of 
the positive and negative directions of Q[ the minimum point is found is governed 
by the signed values of cL. Along which of the FOJT active mode Q1 and the SO 
coupling mode Q~ the true minimum exists is governed by the signed values of 
numerical coefficients of Eqs. (1 l) and (15) and cannot be decided by the present 
group theoretical treatment. 

Next, we deal with the molecules whose SO coupling modes Q~ and Q~ are of 
Type 3. There are two cases to be treated separately. Case 1: quadratic terms 
Q[2_ QL2 and 2Q~ QL belong to the same degenerate representation as the FOJT 
active modes and cubic terms Q~3-3Q~Q~ and Q~3-3Q[2Q'2 belong to the 
remaining one of the three degenerate representations. Case 2: cubic terms 

-.,,r162 and -3Q~2Q'2 and the FOJT active modes belong to the same 
degenerate representation, and quadratic terms Q[2_ Q~2 and 2Q[ Q~ belong to 
the remaining one of the three representations (see Table 1). 

In Case 1 we have 

(~b'o,( Q~, O)lH'l~b'o,( Q~, 0)} = ( b~ - b'2)Q~ 2 

(~P~2(Q[, 0)[H'I0~2(Q~, 0))= (b~ + b'~)Q~ 2 
(17) 
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and 

(0~,(0, Q~)[H'[~b~,(0, Q~)) ~ (bl + b~) Q~2 

(6~2(0, Q~)JH'[0~2(0, Q'e)) ~- ( b'~ - b;)Q; 2. 
(18) 

It is noted that in this ease the wavefunctions along QI are taken to be 6o~(Q~, O) 
and Oo2(Q~, 0) and those along Q~ to be g'ol(0, Q~) and ~o2(0, Q~). Eqs. (17) and 
(18) show that there is no difference in energy between the potential energy 
curves along Q~ and Q~. 

In Case 2 we have 

t ! ( 6o,( Q~, O)[H'It#~,( Q~, 0))= t., ,n,2 -a if.it3 
t," l ' ~  1 ~ C 2 ~  1 

P ! (0o2(Q,, 0)IH'I6~2(Q~, 0)) = h' rv2 , .-.,3 ' J  l ' ~ f  I - -  C 2 1 ~ l  

(19) 

and 

(0~+(0, Q~)IH'[O~+(0, Q~)) --- b,' Q~2 + c2~.2' cv3 

@~_(0, Q~)[H'[tp~_(0, Q~)}=b~ cvz'~2 -- C2~2' f-)t3 
(20) 

Inspecting Eqs. (19) and (20), we arrive at the same conclusions as obtained in 
Case 1. 

All the above results are summarized as follows. For the SO coupling modes of 
Type 1 in molecules with nondegenerate ground states, the FOJT active modes 
of Type I, and the SO coupling modes of Type 2 in molecules with (doubly) 
degenerate ground states, the minimum of the potential energy should be located 
along Q~ and Q~. In all other cases, the potential energy profiles between along 
QI and Q2 or between along Q~ and Q~ cannot be differentiated in the present 
third-order perturbational approximation. Our results are in qualitative agreement 
with the experimental facts that the distorted structures due to the FOJT or SOJT 
effects confirmed so far are always those brought about by the distortion along 
Q, or (Z.  

4. The coefficients in the expansion of electronic energy in power series of Qi 
including up to the third power 

In order to apply the general theory obtained above to actual molecules, we need 
to estimate the possible values of the coefficients of the various powers (up to 
the third power) in the expansion of electronic energy in power series of the 
relevant mode Qi. Using the perturbation theory (see Appendix), we can express 
the coefficients in terms of the zeroth-order wavefunctions and energies. In cases 
in which the ground state is doubly degenerate, the perturbed energy for 0ol is 
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given by 

_=.Zo  o_o - o, ,o, 

- 3  y 

0 2 . OH 
"1- (~]J01 [ (~12.n~ 0 ] I// )(I//rl (~//) 01 001 / 

.~o E. - Eo 

I< I I< ( 
+6 ~ o ~  ~ o ( E , _ E o ) ( E O _ E o )  o +6A]Q3 

with term A is given by 

a =-(0~ (~--~i)ol ~~ ~o (o~ I ( ~ ) ~  ~b"}(o" I ( ~ ) ~  - Eo) 2 ~bol) 

(21) 

(22) 

where Oo] and I~02 are the zeroth-order degenerate ground-state wavefunctions. 
The perturbed energy for ~bo2 is obtained by replacing ~bOl with 002 in Eqs. (21) 
and (22). If the ground state is not degenerate, ~bOl and ~bo2 are replaced by 0o, 
and the second term and term A should be deleted in Eq. (21). Eq. (21) thus 
obtained for the nondegenerate case is different in appearance from but essentially 
the same as the formula given by Salem [8]. 

In order to estimate the probable values of various matrix elements appearing 
in Eqs. (21) and (22) we fully use the selection rules based on the group theoretical 
argument. 

Finally it is noted that the results obtained above hold also for excited states. 
For the lth excited states, ~/'o or ~bo] and 002 should be replaced by ~'t or tPn and 
,t~l 2 �9 

Appendix 

In cases in which the ground state is doubly degenerate (~bo[ and ~/02), it is shown by 
using the Rayleigh-Schrfdinger perturbation theory [9] that in the perturbed energy for 
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~bOl the following term B appears in addit ion to Eq. (21): 

(~o~1VI Om)(tk,, I V10o2)(0o21Vl~b,)(O,d VI ~o,) (A1) 
B = . ,oE .,oE ( E .  - Eo)(E~o; ) - E~o~) (E .  - Eo)  

where ,--o~(') =(Oojl VJOoj)(j = l,  2) and V = (OH/oQf)oQi. 
For the perturbed energy for ~bo2 the addit ional term is - B .  In Eq. (Al) ,  if (~oll V]~m) is 
nonvanishing,  (Om[ V[0o2) should vanish, and vice versa because in molecules treated in 
this paper,  Ool and ~o2 are of opposite symmetry with respect to cry. Therefore, in Eq. 
(21) term B is omitted in both the degenerate and nondegenerate cases. 
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